Math 0980 Exam Formula Sheet

Cycle

Mean of
$$n$$
 values =
$$\frac{(1^{\text{st}} \text{ value}) + (2^{\text{nd}} \text{ value}) + \dots + (\text{last value})}{\text{total number of values}}$$

Midpoint of
$$(a,b)$$
 and $(c,d) = \left(\frac{a+c}{2}, \frac{b+d}{2}\right)$

Common Conversions:

1 ft = 12 in.	1 in. = 2.54 cm	1 L = 1,000 mL	$1 \text{ kg} \approx 2.2 \text{ lb}$
1 mi = 5,280 ft	1 km = 1,000 m	1 lb = 16 oz	$1 \min = 60 \sec$
1 yd = 3 ft	1 m = 100 cm	1 kg = 1,000 g	1 hr = 60 min
$1 \text{ km} \approx 0.62 \text{ mi}$	1 cm = 10 mm	1 g = 1,000 mg	1 yr = 52 weeks
$1 \text{ mi} \approx 1.61 \text{ km}$	1 gal = 4 qt	1 ton = 2,000 lb	1 week = 7 days

$$\mbox{Percent Change} = \frac{\mbox{final-initial}}{\mbox{initial value}} \cdot 100 \qquad \mbox{Multiplier} = \frac{\mbox{final value}}{\mbox{initial value}}$$

Cycle 2

Weighted Mean =
$$\frac{(1^{\text{st}} \text{ value} \cdot 1^{\text{st}} \text{ weight}) + (2^{\text{nd}} \text{ value} \cdot 2^{\text{nd}} \text{ weight}) + \dots + (\text{last value} \cdot \text{last weight})}{\text{sum of weights}}$$

Exponent Rules:
$$\boxed{ x^a x^b = x^{a+b} \mid \frac{x^a}{x^b} = x^{a-b} \mid x^0 = 1 \mid (x^a)^b = x^{ab} \mid (xy)^a = x^a y^a \mid \left(\frac{x}{y}\right)^a = \frac{x^a}{y^a} }$$

Associative Properties: Addition: a + (b + c) = (a + b) + c Multiplication: (ab)c = a(bc)

Commutative Properties: Addition: a + b = b + a Multiplication: ab = ba

$$Probability of an event occurring = \frac{number of favorable outcomes}{number of possible outcomes}$$

Cycle 3

Slope:
$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$
 Point-Slope Form: $y - y_1 = m(x - x_1)$ Slope-Intercept Form: $y = mx + b$

Distance Formula:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Pythagorean Theorem: $a^2 + b^2 = c^2$ $a = \frac{c}{b}$

Cycle 4

Negative Exponent Rules:
$$x^{-a} = \frac{1}{x^a} \left| \frac{1}{x^{-a}} = x^a \right|$$

$$Standard\ Deviation\ = \sqrt{\frac{(1^{st}\ value-mean)^2+(2^{nd}\ value-mean)^2+\cdots+(last\ value-mean)^2}{total\ number\ of\ values}}$$

Deviation of Data Value: deviation = data value - mean
$$z$$
-score: $z = \frac{\text{data value - mean}}{\text{standard deviation}}$

Direct Variation:
$$y = kx$$
 Inverse Variation: $y = \frac{k}{x}$

Rectangle	A = Iw	
Parallelogram	A = bh	
Triangle	$A = \frac{1}{2}bh$	
Trapezoid	$A = \frac{1}{2}h(B + b)$	

Circle	$d = 2r$, $A = \pi r^2$, $C = 2\pi r = \pi d$	
Cylinder	$V = \pi r^2 h, S = 2\pi r^2 + 2\pi r h$	
Cone	$V = \frac{1}{3}\pi r^2 h$	
Sphere	$V = \frac{4}{3}\pi r^3$, $S = 4\pi r^2$	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
Rectangular prism	V = Iwh	